Reliable and efficient validation technologies are critical for the recent development of multi-vehicle cooperation and vehicle-road-cloud integration. In this paper, we introduce our miniature experimental platform, Mixed Cloud Control Testbed (MCCT), developed based on a new notion of Mixed Digital Twin (mixedDT). Combining Mixed Reality with Digital Twin, mixedDT integrates the virtual and physical spaces into a mixed one, where physical entities coexist and interact with virtual entities via their digital counterparts. Under the framework of mixedDT, MCCT contains three major experimental platforms in the physical, virtual and mixed spaces respectively, and provides a unified access for various human-machine interfaces and external devices such as driving simulators. A cloud unit, where the mixed experimental platform is deployed, is responsible for fusing multi-platform information and assigning control instructions, contributing to synchronous operation and real-time cross-platform interaction. Particularly, MCCT allows for multi-vehicle coordination composed of different multi-source vehicles (\eg, physical vehicles, virtual vehicles and human-driven vehicles). Validations on vehicle platooning demonstrate the flexibility and scalability of MCCT.
translated by 谷歌翻译
基于能量功能的安全证书可以为复杂机器人系统的安全控制任务提供可证明的安全保证。但是,所有有关基于学习的能量功能合成的最新研究仅考虑可行性,这可能会导致过度保存并导致效率较低的控制器。在这项工作中,我们提出了幅度的正规化技术,以通过降低能量功能内部的保守性,同时保持有希望的可证明的安全保证,以提高安全控制器的效率。具体而言,我们通过能量函数的幅度来量化保守性,并通过在合成损失中增加幅度的正则化项来降低保守性。我们提出了使用加固学习(RL)进行合成的SAFEMR算法来统一安全控制器和能量功能的学习过程。实验结果表明,所提出的方法确实会降低能量功能的保守性,并在控制器效率方面优于基准,同时确保安全性。
translated by 谷歌翻译
为基于几何的点云压缩(G-PCC)标准开发了基于学习的自适应环滤波器,以减少属性压缩工件。提出的方法首先生成多个最可行的样品偏移(MPSO)作为潜在的压缩失真近似值,然后线性权重以减轻伪影。因此,我们将过滤后的重建驱动尽可能靠近未压缩的PCA。为此,我们设计了一个由两个连续的处理阶段组成的压缩工件还原网络(CARNET):MPSOS推导和MPSOS组合。 MPSOS派生使用两个流网络来模拟来自直接空间嵌入和频率依赖性嵌入的局部邻域变化,在该嵌入中,稀疏的卷积被利用可从细微和不规则分布的点中最佳汇总信息。 MPSOS组合由最小平方误量学指导,以进一步捕获输入PCAS的内容动力学,从而得出加权系数。 Carnet作为GPCC的环内过滤工具实现,其中这些线性加权系数被封装在比特斯流中,并以忽略不计的比特率开销。实验结果表明,对最新的GPCC的主观和客观性都显着改善。
translated by 谷歌翻译
尽管多尺度稀疏张量的卷积表示表明其较高的效率,可以准确地模拟密集对象点云的几何形状分量压缩的占用概率,但其代表稀疏的LIDAR点云几何形状(PCG)的能力在很大程度上受到限制。这是因为1)卷积的固定接受场不能很好地表征极其分布的稀疏点点; 2)经过固定权重的经过预定的卷积不足以动态捕获在输入条件下的信息。因此,这项工作暗示了邻里点的注意(NPA)来解决它们,在那里我们首先使用K最近的邻居(KNN)来构建自适应的当地社区。然后利用自我发明机制在该社区内动态汇总信息。将这种NPA设计为最佳利用跨尺度和相同相关性的NPA形式,以进行几何占用概率估计。与使用标准化G-PCC锚的锚相比,我们的方法为有损压缩提供了> 17%的BD率增长,并且使用Semantickitti和Ford数据集中流行的LIDAR点云的无损场景降低了> 14%的比特率。与使用注意力优化的OCTREE编码方法的最先进的(SOTA)解决方案相比,我们的方法平均需要减少分解运行时的分解时间要少得多,同时仍提出更好的压缩效率。
translated by 谷歌翻译
面部聚类是使用大型未标记的面部图像扩展面部识别系统的一种有希望的方法。识别我们称之为硬群的小或稀疏的面部图像簇仍然具有挑战性,这是由簇的异质性,\ ie,大小和稀疏性的高变化引起的。因此,使用均匀阈值(识别簇)的常规方式通常会导致对应该属于硬群的样品的可怕分类。我们通过利用样品的邻居信息并以概率方式推断(样本的)群集成员来解决这个问题。我们介绍了两个新型模块,分别是基于邻域扩散的密度(NDDE)和基于过渡概率的距离(TPDI),我们可以简单地将标准密度峰值聚类算法应用于均匀的阈值。我们对多个基准测试的实验表明,每个模块都会有助于我们方法的最终性能,并通过将其纳入其他高级面部聚类方法中,这两个模块可以将这些方法的性能提高到新的最先进。代码可在以下网址获得:https://github.com/echoanran/on-mitigating-hard-clusters。
translated by 谷歌翻译
本研究通过基于稀疏的张量处理(STP)的Voxelized PCG的多尺度表示,通过稀疏的张解器处理(STP)进行了一种统一点云几何形状(PCG)压缩方法。应用STP显着降低了复杂性,因为它只执行以最可能的积极占用体素(MP-POV)为中心的卷曲。并且多尺度代表有助于我们逐步压缩规模明智的MP-POV。总压缩效率高度取决于每个MP-POV的占用概率的近似精度。因此,我们设计基于稀疏的卷积的神经网络(Sparsecnn),包括稀疏卷曲和体素重新采样以广泛利用前沿。然后,我们开发基于SPARSECNN的占用概率近似(SOPA)模型,以估计在单阶段的方式中仅在逐步使用自回归邻居之前或以多阶段使用的横级或以多级的方式估计占用概率。此外,我们还建议基于SPARSECNN的本地邻居嵌入(SLNE),以表征当地空间变化作为改进SOPA的特征属性。我们的统一方法显示了在与MPEG G-PCC相比的各种数据集中,包括致密PCG(8iVFB,OWLII)和稀疏LIDAR PCG(KITTI,FORD)的各种数据集中的无损压缩模式中的最先进的性能和其他基于学习的压缩方案。此外,所提出的方法由于跨越所有尺度的模型共享而引起的轻量级复杂性,并且由于模型共享。我们使所有材料可在HTTPS://github.com/njuvision/sparsepcgc上公开访问可重复的研究。
translated by 谷歌翻译
与基于现代聚类算法的完全监督的REID方法相比,未经监督的人重新识别(U-Reid)最近达到了竞争性能。然而,这种基于聚类的方案对大规模数据集来说变得对计算方式。如何探讨如何有效利用具有有限计算资源的无限未标记的数据,以便更好地进行更好的U-Reid。在本文中,我们首次尝试大规模U-Reid并提出一个“大型任务的小数据”范式被称为Meta聚类学习(MCL)。 MCL仅通过群集伪标记整个未标记数据的子集,以节省第一期训练的计算。之后,被学习的集群中心称为我们的MCL中的元原型,被视为代理注释器,以便轻松注释其它未标记数据以进一步抛光模型。为了缓解抛光阶段的潜在嘈杂的标签问题,我们强制执行两个精心设计的损失限制,以保证境内统一的一致性和相互识别的强烈相关性。对于多个广泛使用的U-REID基准测试,我们的方法显着节省了计算成本,同时与先前作品相比,实现了可比或更好的性能。
translated by 谷歌翻译
我们报告了以前未被发现的多项式加强学习(MARL),名为“责任扩散”(DR)。博士导致谈判可靠的责任划分以完成复杂的合作任务。它反映了现有算法如何处理基于价值和基于策略的MARL方法的多种探索难题的缺陷。该DR问题与社会心理学领域(也称为旁观者效应)中具有相同名称的现象具有相似之处。在这项工作中,我们从理论上分析了DR问题的原因开始,我们强调DR问题与奖励成型或信用分配问题无关。为了解决DR问题,我们提出了一种政策共振方法,以改变多种勘探探索策略并促进MARL算法在困难的MARL任务中的性能。大多数现有的MARL算法可以配备此方法,以解决由DR问题引起的性能降解。实验是在多个测试基准任务中进行的,包括FME,诊断性多种环境和竞争性的多基因游戏ADCA。最后,我们在SOTA MARL算法上实施了策略共振方法,以说明这种方法的有效性。
translated by 谷歌翻译
多基础强化学习(MARL)可以解决复杂的合作任务。但是,现有的MAL方法的效率在很大程度上取决于明确定义的奖励功能。具有稀疏奖励反馈的多项式任务尤其具有挑战性,这不仅是由于信用分配问题,而且还因为获得积极的奖励反馈的可能性较低。在本文中,我们设计了一个称为合作图(CG)的图形网络。合作图是两个简单的二分图的组合,即代理聚类子图(ACG)和指定子图(CDG)的群集。接下来,基于这种新颖的图形结构,我们提出了一个合作图多力增强学习(CG-MARL)算法,该算法可以有效地处理多基因任务中的稀疏奖励问题。在CG-MARL中,代理由合作图直接控制。政策神经网络经过培训,可以操纵这一合作图,并指导代理人以隐式的方式实现合作。 CG-MARL的层次结构特征为定制集群活动提供了空间,这是一个可扩展的界面,用于引入基本合作知识。在实验中,CG-MARL在稀疏奖励多基准基准中显示出最新的性能,包括抗侵袭拦截任务和多货车交付任务。
translated by 谷歌翻译
由于基于相交的联盟(IOU)优化维持最终IOU预测度量和损失的一致性,因此它已被广泛用于单级2D对象检测器的回归和分类分支。最近,几种3D对象检测方法采用了基于IOU的优化,并用3D iou直接替换了2D iou。但是,由于复杂的实施和效率低下的向后操作,3D中的这种直接计算非常昂贵。此外,基于3D IOU的优化是优化的,因为它对旋转很敏感,因此可能导致训练不稳定性和检测性能恶化。在本文中,我们提出了一种新型的旋转旋转iou(RDIOU)方法,该方法可以减轻旋转敏感性问题,并在训练阶段与3D IOU相比产生更有效的优化目标。具体而言,我们的RDIOU通过将旋转变量解耦为独立术语,但保留3D iou的几何形状来简化回归参数的复杂相互作用。通过将RDIOU纳入回归和分类分支,鼓励网络学习更精确的边界框,并同时克服分类和回归之间的错位问题。基准Kitti和Waymo开放数据集的广泛实验验证我们的RDIOU方法可以为单阶段3D对象检测带来实质性改进。
translated by 谷歌翻译